LOY	OLA COLLE	GE (AUTONO	DMOUS), CH	ENNAI – 600 034
1162333	M.Sc. DI	EGREE EXAMI	NATION - STA	TISTICS
₹₹	SECO	OND SEMESTE	CR – APRIL 20	13
AUCEAR WESTER	ST 2817	- CATEGORIC	AL DATA ANA	LYSIS
COR VEDER]
Date : 04/05/ Time : 9:00 -	2013 De 12:00	ept. No.		Max. : 100 Marks
		SECTION	τΑ	
Answer ALL the fol	llowing questions	(10 x 2 = 20 mai)	$(\underline{A} - \underline{A})$	
1. Define a 'no	minal variable' wi	th an example.		
2. Mention any	one distribution r	elevant for catego	rical data and the	situation in which it arises.
3. State the Wa	ld's statistic for te	sting a specified v	value of Poisson p	arameter.
4. Define Rela	ative Risk and exj	plain with an exam	mple now it is mo	ore insigntful than Difference of
5. Define 'Sam	mle Odds Ratio' t	for 2 x 2 conting	ency tables. Show	y that it is unaffected even with
disproportio	nately large or sma	all samples for ma	rginal categories	of any of the variables.
6. State the asy	mptotic distributio	on of the sample le	ogit.	5
7. State the Pea	arson and Standard	lized Residuals fo	r two-way tables.	
8. Describe the	'Partitioned Chi-S	Square' approach	for 2 X J continge	ncy tables.
9. Give the intu	itive motivation f	or the 'log' link fu	inction in modelin	ig Poisson Count data.
10. Define Dev	lance for a Gener	alized Linear Mod	iei.	
		<u>SECTION</u>	<u>I – B</u>	0.40.1.)
Answer any FIVE q	uestions		n (<u>5</u>	$\underline{x \ 8} = 40 \text{ marks}$
11. Suppose that	$P(Y_i = 1) = \pi, i =$	1,2,,n. Let Y =	$\sum_{i=1}^{n} Y_i$	
(a) When {Y _i]	have pairwise corr	elation ρ > 0, show	that Var(Y) > n $\pi(1)$	-π).
(b) Suppose	that heterogeneity	exists: $P(Y_i = 1 \pi$) = π for all i, Y _i 's and	re independent, but π is a r.v. with
(3 + 5)	unction g(.) on [0,	1] naving mean p		e. Show that $Var(Y) > h p (1 - p)$.
12. Give the ger multiparame	neral frameworks ter versions of Sco	of the (a) Likelih ore Test.	ood Ratio Test; a	and (b) the single parameter and (b)
13. Discuss with	n examples: Case-(Control. Cohort ar	d Cross-Sectional	Studies.
14. The following	table is based on m	nedical records of p	eople in a village:	
	Stomach A	ilments		
Oil Used Yes	No			
Ordinary Oil	40 4050			
	Refined Oil	3 1030		
			.	
Identify the	response variable a	and find differenc	e of proportions, r	elative risk and
results	me relative risk an	luodus ratio aimos	a same? interpret	licont'd]
icouito.				

15. The following table reports the results of a survey on educational level versus religious beliefs:

	Religious beliefs					
. Education level	Fundamentalist	Moderate	Liberal			
Less than high school	59	46	36			
High school – Junior college	190	216	147			
Entered College level	46	84	86			

Compute 'Goodman and Kruskal' Gamma coefficient and interpret the result.

- 16. Apply the Delta Method of getting the asymptotic standard error of log odds ratio and point out the amendments needed in the case of zero frequency cells.
- 17. The following are the computed logit scores obtained in building a binary logit model involving 20 data points:

DV	1	1	0	1	0	0	1	1	1	0
Logit	21.25	28.58	0.59	1.68	-3.73	-5.97	14.74	17.55	3.78	3.95
score										
DV	1	1	0	1	0	0	1	1	1	0
Logit	18.23	22.55	24.31	4.31	-2.94	5.96	12.15	25.57	26.68	2.86
score										

Construct the 'Gains Table' and compute the KS statistic for the model.

18. Develop the 'Cumulative Logits' for an ordinal response variable. Explain how the probabilities for the different response categories are estimated.

<u>SECTION – C</u>

<u>Answer any TWO questions</u> $(2 \times 20 = 40 \text{ marks})$

- 19. (a) Derive the 'Score Test' and the 'Score Confidence Interval' for the Binomial parameter. (b) In a survey, a question requiring yes / no (support / oppose) response was addressed to a sample of 1800 persons to find out the support for a new proposal. 810 said 'yes'. Let π be the population proportion who would reply 'yes' (support). Find the p-value for testing H_o: $\pi = 0.5$ using the score test and construct a 95% CI for π . Interpret the results.(12+ 8)
- 20. (a) Present the 'Proportional Reduction in Variation' formulation for measuring association between nominal variables. Develop the 'Uncertainty Coefficient' (U) and 'Concentration Coefficient' (τ).

(b) A study was conducted to see how the award of death penalty in murder cases is associated with the race of accused. Here the response variable was Y = Death penalty verdict, with categories (Yes, No) and explanatory variable was X = Race of accused, with categories (white, black). The other covariate was Z = Race of victim, with categories (white, black). Data on 674 murder cases are summarized in the following 2 x 2 x 2 table:

[Cont'd]

Race of	Race of		Death Penalty Verdict		
	Victim	Accused	Yes	No	
-	White	White		53	414
		Black		11	37
	Black	White		0	16
		Black		4	139
ALL	White	;	53	430	

Black	15	176

Using the above data, show that conditional odds ratios are capable of revealing certainrelationships that are hidden by marginal odds ratio. (12+ 8)

21. a) Briefly sketch the Pearson's Chi-square and Likelihood Ratio Chi-square tests for independence in twoway tables.

(b)Using the data in Q. No. (15), test the hypothesis of independence between education level and religious belief, by Pearson's X^2 Statistic and the Likelihood Ratio G^2 Statistic. (6 + 14)

22. (a) Develop the 'Baseline Category Logits' for nominal response variables. Explain how the probabilities for the different response categories are estimated. (b) A study on food preference of invitees for a party was conducted by considering Gender, Nativity (Tamilnadu / Other South Indian States / North India / NorthEast India), Age (Youth / Middle aged / Old) as predictors. The food varieties available were Madras Meals / Andhra Meals / Tandoori. With Madras Meals as the baseline category, a Multinomial logit model was built and the two logit equations' coefficients are summarized below. Gender was found insignificant.

Logit	Intercept	SouthernNo	orthernNorth-e	ast Y outh	Middle-aged		
$Log(p_{Andhra}/p_{Madras})$	-1.55	1.46	-1.66	0.94	1.12	2.79	
$Log \; (p_{Tandoor} / p_{Madras})$	-2.09	-0.63	0.70	0.65	3.28	1.52	

Find the probabilities for different food preferences for invitees of the following categories:

(i) An old person from a southern state(other than Tamilnadu)

(ii) A youth from Tamilnadu

(iii) A middle-aged person from North-east

Interpret these probabilities.

(8 + 12)

* * * * * * *